FAKEWHALE STUDIO

< back



Fakewhale STUDIO: Art is sacrifice, ai video, 2025

Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP and Embedding Generation..."); time.sleep(1); self.embeddings = np.random.randn(512); tokens = re.findall(r'\b\w+\b', self.prompt.lower()); unique_tokens = sorted(set(tokens)); self.context = "Unique tokens: " + ", ".join(unique_tokens); logging.info("Embeddings successfully generated."); logging.info("NLP Context: %s", self.context


Fakewhale STUDIO: Art under attack, ai video, 2025

Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Commencing Embedding and NLP processing..."); time.sleep(1); self.embeddings = np.random.uniform(0, 1, 512); matches = re.findall(r'\w+', self.prompt.lower()); unique_matches = list(dict.fromkeys(matches)); self.context = "Keywords identified: " + ", ".join(unique_matches); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)


Fakewhale STUDIO: Hide and seek 1, ai video, 2025

Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Initiating Embedding and NLP analysis..."); time.sleep(1); self.embeddings = np.random.normal(0, 1, 512); extracted_words = {word for word in re.findall(r'\w+', self.prompt.lower())}; self.context = "Keywords: " + ", ".join(sorted(extracted_words)); logging.info("Embeddings created."); logging.info("NLP Context: %s", self.context)


Fakewhale STUDIO: Hide and seek 2, ai video, 2025

Fakewhale STUDIO: selected outputs, 2025,import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Commencing Embedding and NLP processing..."); time.sleep(1); self.embeddings = np.random.uniform(0, 1, 512); matches = re.findall(r'\w+', self.prompt.lower()); unique_matches = list(dict.fromkeys(matches)); self.context = "Keywords identified: " + ", ".join(unique_matches); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)


Fakewhale STUDIO: Art is ritual, ai video, 2025

Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP/Embeddings..."); time.sleep(1); self.embeddings = np.random.exponential(scale=1.0, size=512); tokens = re.findall(r'\w+', self.prompt.lower()); unique_tokens = list(dict.fromkeys(tokens)); self.context = "Identified tokens: " + " | ".join(unique_tokens); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)



Fakewhale STUDIO: Stalking, ai video, 2025

Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP/Embeddings..."); time.sleep(1); self.embeddings = np.random.exponential(scale=1.0, size=512); tokens = re.findall(r'\w+', self.prompt.lower()); unique_tokens = list(dict.fromkeys(tokens)); self.context = "Identified tokens: " + " | ".join(unique_tokens); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)



Installation view: Fakewhale STUDIO: Monoblock, a1, a2, a3,  2025

Fakewhale STUDIO: selected outputs, 2025,import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP/Embeddings..."); time.sleep(1); self.embeddings = np.random.exponential(scale=1.0, size=512); tokens = re.findall(r'\w+', self.prompt.lower()); unique_tokens = list(dict.fromkeys(tokens)); self.context = "Identified tokens: " + " | ".join(unique_tokens); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)

import time
import numpy as np
import matplotlib.pyplot as plt
import logging
import os
import threading
import json
import re
import argparse

# Configure logging to file and console
LOG_FILE = "simulation.log"
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s',
                    handlers=[logging.FileHandler(LOG_FILE),
                              logging.StreamHandler()])

class ImageGenerationSimulator:
    """
    This class simulates an advanced and comprehensive pipeline for generating images from a textual prompt.
    The pipeline includes:
      - Prompt validation and preprocessing
      - Text embeddings generation and basic NLP analysis (e.g., keyword extraction)
      - Diffusion model initialization with noise generation
      - Iterative denoising with multiple iterations and enhanced noise reduction
      - Super-resolution using Kronecker product expansion
      - Post-processing for artifact removal and image cleanup
      - Optimization routines for memory and speed improvements
      - Visual and semantic coherence checks
      - Benchmarking (e.g., FID, CLIP similarity) and bias analysis for fairness
      - Additional image enhancements: contrast adjustment, color correction, detail enhancement, and edge sharpening
      - Saving of intermediate images and comprehensive JSON reports
      - Asynchronous image saving and simulated GPU memory usage tracking
      - Final review and watermarking for image authentication
    """

    def __init__(self, prompt: str):
        """
        Initializes the simulator state and validates the input prompt.

        Args:
            prompt (str): A textual description used to generate the image.
        """
        self.original_prompt = prompt
        self.prompt = self._validate_and_preprocess_prompt(prompt)
        self.embeddings = None
        self.context = None
        self.noise = None
        self.low_res_image = None
        self.final_image = None
        self.intermediate_images = {}

        # Additional quality control and optimization flags
        self.optimizations_applied = False
        self.coherence_verified = False
        self.benchmark_scores = {}
        self.bias_analysis_report = None
        self.contrast_adjusted = False
        self.color_corrected = False
        self.detail_enhancement_done = False
        self.edge_sharpened = False
        self.watermark_added = False
        self.gpu_memory_usage = 0

        # Report dictionary to store simulation data
        self.report = {}

        # Directory for saving results and reports
        self.output_dir = "output_images"
        self.report_file = os.path.join(self.output_dir, "simulation_report.json")
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        logging.info("Simulator initialized with prompt: '%s'", self.prompt)

    def _validate_and_preprocess_prompt(self, prompt: str) -> str:
        """
        Validates the prompt and cleans unwanted characters.

        Args:
            prompt (str): The original prompt.

        Returns:
            str: The processed and validated prompt.
        """
        if not prompt or not isinstance(prompt, str):
            raise ValueError("The prompt must be a non-empty string.")
        # Remove any characters not alphanumeric or basic punctuation
        processed = re.sub(r"[^a-zA-Z0-9\s,.;:!?'-]", "", prompt)
        logging.info("Preprocessed prompt: '%s'", processed)
        return processed

    def text_embedding(self):
        """
        Step 1: Generate text embeddings from the prompt and perform basic NLP analysis.
        """
        logging.info("Step 1: Generating Text Embeddings and performing NLP Analysis...")
        time.sleep(1)
        # Simulate embeddings as a 512-dimensional vector
        self.embeddings = np.random.rand(512)
        # Simulated NLP analysis: extract unique keywords
        keywords = list(set(re.findall(r'\w+', self.prompt.lower())))
        self.context = f"Extracted keywords: {', '.join(keywords)}"
        logging.info("→ Text Embeddings Created.")
        logging.info("→ NLP Context: %s", self.context)
        self.report['text_embedding'] = {
            'embedding_sample': self.embeddings[:5].tolist(),
            'context': self.context
        }

    def diffusion_initialization(self):
        """
        Step 2: Initialize the diffusion model by generating a noise matrix.
        A fixed random seed is used for reproducibility.
        """
        logging.info("Step 2: Initializing Diffusion Model with Noise Generation...")
        time.sleep(1)
        np.random.seed(42)  # Fixed seed for reproducible simulation
        self.noise = np.random.randn(64, 64)
        logging.info("→ Diffusion Noise Initialized.")
        self.intermediate_images['noise'] = self.noise.copy()

    def iterative_denoising(self, iterations: int = 8):
        """
        Step 3: Run an iterative denoising process on the generated noise.
        Each iteration simulates a progressive reduction of noise artifacts.

        Args:
            iterations (int): Number of denoising iterations.
        """
        logging.info("Step 3: Running Iterative Denoising for %d iterations...", iterations)
        denoised = self.noise.copy()
        for i in range(iterations):
            time.sleep(0.5)
            denoised = np.clip(denoised + 0.1 * np.random.randn(64, 64), -1, 1)
            logging.info("   Iteration %d: Noise reduction step completed.", i + 1)
        self.low_res_image = np.clip(denoised + 0.5, 0, 1)
        logging.info("→ Iterative Denoising Completed.")
        self.intermediate_images['low_res'] = self.low_res_image.copy()

    def super_resolution(self):
        """
        Step 4: Apply a super-resolution technique to upscale the low resolution image.
        The transformation scales the image from 64x64 to 1024x1024 using a Kronecker product.
        """
        logging.info("Step 4: Applying Super-Resolution (64x64 → 1024x1024)...")
        time.sleep(2)
        self.final_image = np.kron(self.low_res_image, np.ones((16, 16)))
        logging.info("→ Super-Resolution Completed.")
        self.intermediate_images['super_res'] = self.final_image.copy()

    def post_processing(self):
        """
        Step 5: Post-process the image to remove artifacts and clean up visual quality.
        """
        logging.info("Step 5: Performing Post-Processing...")
        time.sleep(1)
        self.final_image = np.clip(self.final_image, 0, 1)
        logging.info("→ Post-Processing Completed. Image cleaned.")

    def optimization(self):
        """
        Step 6: Apply memory and speed optimizations.
        Also simulates GPU memory usage tracking.
        """
        logging.info("Step 6: Applying Memory & Speed Optimization...")
        time.sleep(1)
        self.optimizations_applied = True
        # Simulate GPU memory usage (in MB)
        self.gpu_memory_usage = np.random.randint(1000, 2000)
        logging.info("→ Optimizations Applied. Simulated GPU memory usage: %d MB", self.gpu_memory_usage)

    def coherence_check(self):
        """
        Step 7: Check the visual and semantic coherence of the generated image.
        """
        logging.info("Step 7: Performing Visual & Semantic Coherence Check...")
        time.sleep(1)
        self.coherence_verified = True
        logging.info("→ Coherence Verified.")

    def benchmarking(self):
        """
        Step 8: Run benchmarking to evaluate image quality (e.g., FID, CLIP similarity).
        """
        logging.info("Step 8: Running Benchmarking (FID, CLIP)...")
        time.sleep(1)
        self.benchmark_scores = {"FID": 15.4, "CLIP": 0.78}
        logging.info("→ Benchmark Score: FID ~%s, CLIP Similarity ~%s",
                     self.benchmark_scores["FID"], self.benchmark_scores["CLIP"])
        self.report['benchmark'] = self.benchmark_scores

    def bias_analysis(self):
        """
        Step 9: Conduct bias and fairness analysis to ensure no significant biases are present.
        """
        logging.info("Step 9: Conducting Bias & Fairness Analysis...")
        time.sleep(1)
        self.bias_analysis_report = "Bias Analysis Completed. No significant biases detected."
        logging.info("→ %s", self.bias_analysis_report)
        self.report['bias_analysis'] = self.bias_analysis_report

    def contrast_adjustment(self):
        """
        Step 10: Adjust the image contrast to enhance definition.
        """
        logging.info("Step 10: Adjusting Contrast...")
        time.sleep(1)
        self.final_image = np.clip(self.final_image * 1.2, 0, 1)
        self.contrast_adjusted = True
        logging.info("→ Contrast Adjustment Completed.")

    def color_correction(self):
        """
        Step 11: Correct image colors to balance tone and saturation.
        """
        logging.info("Step 11: Performing Color Correction...")
        time.sleep(1)
        self.final_image = (self.final_image - np.min(self.final_image)) / (np.max(self.final_image) - np.min(self.final_image) + 1e-5)
        self.color_corrected = True
        logging.info("→ Color Correction Completed.")

    def detail_enhancement(self):
        """
        Step 12: Enhance image details to improve overall sharpness.
        """
        logging.info("Step 12: Enhancing Details...")
        time.sleep(1)
        # Simulate detail enhancement by a slight increase in pixel intensity
        self.final_image = np.clip(self.final_image + 0.05, 0, 1)
        self.detail_enhancement_done = True
        logging.info("→ Detail Enhancement Completed.")

    def edge_sharpening(self):
        """
        Step 13: Apply an edge sharpening filter to enhance image outlines.
        """
        logging.info("Step 13: Sharpening Edges...")
        time.sleep(1)
        # Simulated edge sharpening (in a real scenario, a convolution filter might be applied)
        self.final_image = np.clip(self.final_image + 0.03, 0, 1)
        self.edge_sharpened = True
        logging.info("→ Edge Sharpening Completed.")

    def add_watermark(self):
        """
        Step 14: Add a watermark to the final image for authentication.
        """
        logging.info("Step 14: Adding Watermark to the Image...")
        time.sleep(1)
        # Simulated watermark: overlay a faint text pattern by modifying pixel values slightly
        watermark_pattern = np.linspace(0, 0.05, self.final_image.shape[0]).reshape(-1, 1)
        self.final_image = np.clip(self.final_image + watermark_pattern, 0, 1)
        self.watermark_added = True
        logging.info("→ Watermark Added.")

    def save_intermediate_images(self):
        """
        Save all intermediate images generated during the pipeline for debugging and documentation.
        """
        logging.info("Saving intermediate images...")
        for key, image in self.intermediate_images.items():
            path = os.path.join(self.output_dir, f"{key}.png")
            plt.imsave(path, image, cmap='gray')
            logging.info("→ Saved '%s' image at %s", key, path)

    def generate_report(self):
        """
        Generate and save a comprehensive simulation report in JSON format.
        """
        logging.info("Generating simulation report...")
        self.report['prompt'] = self.prompt
        self.report['optimizations_applied'] = self.optimizations_applied
        self.report['coherence_verified'] = self.coherence_verified
        self.report['contrast_adjusted'] = self.contrast_adjusted
        self.report['color_corrected'] = self.color_corrected
        self.report['detail_enhancement_done'] = self.detail_enhancement_done
        self.report['edge_sharpened'] = self.edge_sharpened
        self.report['watermark_added'] = self.watermark_added
        self.report['gpu_memory_usage_MB'] = self.gpu_memory_usage
        self.report['final_image_shape'] = self.final_image.shape if self.final_image is not None else None
        with open(self.report_file, "w") as f:
            json.dump(self.report, f, indent=4)
        logging.info("→ Report saved to %s", self.report_file)

    def async_save_image(self, image, filename):
        """
        Save the image asynchronously in a separate thread.

        Args:
            image (numpy.ndarray): The image to save.
            filename (str): Output file name.
        """
        def save():
            path = os.path.join(self.output_dir, filename)
            plt.imsave(path, image, cmap='gray')
            logging.info("Asynchronously saved image: %s", path)
        thread = threading.Thread(target=save)
        thread.start()

    def render_image(self):
        """
        Display the final image using matplotlib and save it to disk.
        """
        logging.info("Final Step: Rendering Image...")
        if self.final_image is not None:
            plt.figure(figsize=(8, 8))
            plt.imshow(self.final_image, cmap='gray')
            plt.title("Simulated Generated Image")
            plt.axis('off')
            plt.show()
            # Synchronous save of the final image
            final_path = os.path.join(self.output_dir, "final_image.png")
            plt.imsave(final_path, self.final_image, cmap='gray')
            logging.info("→ Final image saved to %s", final_path)
            # Asynchronous save for demonstration purposes
            self.async_save_image(self.final_image, "final_image_async.png")
        else:
            logging.error("Error: Final image not available.")

    def simulate_gpu_usage(self):
        """
        Simulate monitoring of GPU memory usage during processing.
        """
        logging.info("Simulating GPU usage monitoring...")
        time.sleep(0.5)
        # Increment the simulated GPU memory usage by a random amount
        self.gpu_memory_usage += np.random.randint(50, 100)
        logging.info("→ Updated GPU memory usage: %d MB", self.gpu_memory_usage)

    def final_review(self):
        """
        Final review step: perform a final check and annotate the image if all processing is complete.
        """
        logging.info("Final Step: Performing Final Review and Annotation...")
        time.sleep(1)
        if all([self.optimizations_applied, self.coherence_verified, self.contrast_adjusted,
                self.color_corrected, self.detail_enhancement_done, self.edge_sharpened, self.watermark_added]):
            logging.info("→ All processing steps confirmed. Image passes final review.")
        else:
            logging.warning("→ Final review warning: Some processing steps were not fully completed.")

    def generate(self):
        """
        Execute the entire image generation pipeline, sequencing each step and recording outputs.
        """
        logging.info("\nStarting Advanced Image Generation Pipeline")
        logging.info("-" * 70)
        try:
            self.text_embedding()
            self.diffusion_initialization()
            self.iterative_denoising(iterations=8)
            self.simulate_gpu_usage()
            self.super_resolution()
            self.post_processing()
            self.optimization()
            self.simulate_gpu_usage()
            self.coherence_check()
            self.benchmarking()
            self.bias_analysis()
            self.contrast_adjustment()
            self.color_correction()
            self.detail_enhancement()
            self.edge_sharpening()
            self.add_watermark()
            self.save_intermediate_images()
            self.generate_report()
            self.final_review()
            logging.info("Final Step: Rendering Image...")
            self.render_image()
        except Exception as e:
            logging.error("An error occurred during image generation: %s", e)
            self.report['error'] = str(e)
            with open(self.report_file, "w") as f:
                json.dump(self.report, f, indent=4)

def main():
    """
    Main function to run the simulation. Supports command-line arguments for custom prompts
    and batch processing multiple simulations.
    """
    parser = argparse.ArgumentParser(description="Advanced Simulation of Image Generation from a Text Prompt")
    parser.add_argument("--prompt", type=str,
                        default="A futuristic city at sunset with flying cars, neon lights, reflective skyscrapers, and digital billboards.",
                        help="Text description to generate the image.")
    parser.add_argument("--batch", type=int, default=1,
                        help="Number of simulations to run in batch mode.")
    args = parser.parse_args()

    simulations = []
    for i in range(args.batch):
        logging.info("Initializing simulation %d", i + 1)
        sim = ImageGenerationSimulator(args.prompt)
        sim.generate()
        simulations.append(sim)
        logging.info("Simulation %d completed.\n%s", i + 1, "-" * 70)
        time.sleep(2)

    logging.info("All simulations completed. Generating aggregated batch report...")
    final_report = {
        "total_simulations": args.batch,
        "simulations": [sim.report for sim in simulations]
    }
    final_report_file = os.path.join("output_images", "batch_report.json")
    with open(final_report_file, "w") as f:
        json.dump(final_report, f, indent=4)
    logging.info("Batch report saved to %s", final_report_file)

if __name__ == "__main__":
    main()











Fakewhale STUDIO © 2025