< back
Fakewhale STUDIO: Art is sacrifice, ai video, 2025
Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP and Embedding Generation..."); time.sleep(1); self.embeddings = np.random.randn(512); tokens = re.findall(r'\b\w+\b', self.prompt.lower()); unique_tokens = sorted(set(tokens)); self.context = "Unique tokens: " + ", ".join(unique_tokens); logging.info("Embeddings successfully generated."); logging.info("NLP Context: %s", self.context
Fakewhale STUDIO: Art under attack, ai video, 2025
Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Commencing Embedding and NLP processing..."); time.sleep(1); self.embeddings = np.random.uniform(0, 1, 512); matches = re.findall(r'\w+', self.prompt.lower()); unique_matches = list(dict.fromkeys(matches)); self.context = "Keywords identified: " + ", ".join(unique_matches); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)
Fakewhale STUDIO: Hide and seek 1, ai video, 2025
Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Initiating Embedding and NLP analysis..."); time.sleep(1); self.embeddings = np.random.normal(0, 1, 512); extracted_words = {word for word in re.findall(r'\w+', self.prompt.lower())}; self.context = "Keywords: " + ", ".join(sorted(extracted_words)); logging.info("Embeddings created."); logging.info("NLP Context: %s", self.context)
Fakewhale STUDIO: Hide and seek 2, ai video, 2025
Fakewhale STUDIO: selected outputs, 2025,import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Commencing Embedding and NLP processing..."); time.sleep(1); self.embeddings = np.random.uniform(0, 1, 512); matches = re.findall(r'\w+', self.prompt.lower()); unique_matches = list(dict.fromkeys(matches)); self.context = "Keywords identified: " + ", ".join(unique_matches); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)
Fakewhale STUDIO: Art is ritual, ai video, 2025
Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP/Embeddings..."); time.sleep(1); self.embeddings = np.random.exponential(scale=1.0, size=512); tokens = re.findall(r'\w+', self.prompt.lower()); unique_tokens = list(dict.fromkeys(tokens)); self.context = "Identified tokens: " + " | ".join(unique_tokens); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)
Fakewhale STUDIO: Stalking, ai video, 2025
Fakewhale STUDIO: selected outputs, 2025, import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP/Embeddings..."); time.sleep(1); self.embeddings = np.random.exponential(scale=1.0, size=512); tokens = re.findall(r'\w+', self.prompt.lower()); unique_tokens = list(dict.fromkeys(tokens)); self.context = "Identified tokens: " + " | ".join(unique_tokens); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)
Installation view: Fakewhale STUDIO: Monoblock, a1, a2, a3, 2025
Fakewhale STUDIO: selected outputs, 2025,import logging, time, numpy as np, re; logging.info("Fakewhale STUDIO: selected outputs, 2025 - Starting NLP/Embeddings..."); time.sleep(1); self.embeddings = np.random.exponential(scale=1.0, size=512); tokens = re.findall(r'\w+', self.prompt.lower()); unique_tokens = list(dict.fromkeys(tokens)); self.context = "Identified tokens: " + " | ".join(unique_tokens); logging.info("Embeddings generated."); logging.info("NLP Context: %s", self.context)
import time
import numpy as np
import matplotlib.pyplot as plt
import logging
import os
import threading
import json
import re
import argparse
# Configure logging to file and console
LOG_FILE = "simulation.log"
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.FileHandler(LOG_FILE),
logging.StreamHandler()])
class ImageGenerationSimulator:
"""
This class simulates an advanced and comprehensive pipeline for generating images from a textual prompt.
The pipeline includes:
- Prompt validation and preprocessing
- Text embeddings generation and basic NLP analysis (e.g., keyword extraction)
- Diffusion model initialization with noise generation
- Iterative denoising with multiple iterations and enhanced noise reduction
- Super-resolution using Kronecker product expansion
- Post-processing for artifact removal and image cleanup
- Optimization routines for memory and speed improvements
- Visual and semantic coherence checks
- Benchmarking (e.g., FID, CLIP similarity) and bias analysis for fairness
- Additional image enhancements: contrast adjustment, color correction, detail enhancement, and edge sharpening
- Saving of intermediate images and comprehensive JSON reports
- Asynchronous image saving and simulated GPU memory usage tracking
- Final review and watermarking for image authentication
"""
def __init__(self, prompt: str):
"""
Initializes the simulator state and validates the input prompt.
Args:
prompt (str): A textual description used to generate the image.
"""
self.original_prompt = prompt
self.prompt = self._validate_and_preprocess_prompt(prompt)
self.embeddings = None
self.context = None
self.noise = None
self.low_res_image = None
self.final_image = None
self.intermediate_images = {}
# Additional quality control and optimization flags
self.optimizations_applied = False
self.coherence_verified = False
self.benchmark_scores = {}
self.bias_analysis_report = None
self.contrast_adjusted = False
self.color_corrected = False
self.detail_enhancement_done = False
self.edge_sharpened = False
self.watermark_added = False
self.gpu_memory_usage = 0
# Report dictionary to store simulation data
self.report = {}
# Directory for saving results and reports
self.output_dir = "output_images"
self.report_file = os.path.join(self.output_dir, "simulation_report.json")
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
logging.info("Simulator initialized with prompt: '%s'", self.prompt)
def _validate_and_preprocess_prompt(self, prompt: str) -> str:
"""
Validates the prompt and cleans unwanted characters.
Args:
prompt (str): The original prompt.
Returns:
str: The processed and validated prompt.
"""
if not prompt or not isinstance(prompt, str):
raise ValueError("The prompt must be a non-empty string.")
# Remove any characters not alphanumeric or basic punctuation
processed = re.sub(r"[^a-zA-Z0-9\s,.;:!?'-]", "", prompt)
logging.info("Preprocessed prompt: '%s'", processed)
return processed
def text_embedding(self):
"""
Step 1: Generate text embeddings from the prompt and perform basic NLP analysis.
"""
logging.info("Step 1: Generating Text Embeddings and performing NLP Analysis...")
time.sleep(1)
# Simulate embeddings as a 512-dimensional vector
self.embeddings = np.random.rand(512)
# Simulated NLP analysis: extract unique keywords
keywords = list(set(re.findall(r'\w+', self.prompt.lower())))
self.context = f"Extracted keywords: {', '.join(keywords)}"
logging.info("→ Text Embeddings Created.")
logging.info("→ NLP Context: %s", self.context)
self.report['text_embedding'] = {
'embedding_sample': self.embeddings[:5].tolist(),
'context': self.context
}
def diffusion_initialization(self):
"""
Step 2: Initialize the diffusion model by generating a noise matrix.
A fixed random seed is used for reproducibility.
"""
logging.info("Step 2: Initializing Diffusion Model with Noise Generation...")
time.sleep(1)
np.random.seed(42) # Fixed seed for reproducible simulation
self.noise = np.random.randn(64, 64)
logging.info("→ Diffusion Noise Initialized.")
self.intermediate_images['noise'] = self.noise.copy()
def iterative_denoising(self, iterations: int = 8):
"""
Step 3: Run an iterative denoising process on the generated noise.
Each iteration simulates a progressive reduction of noise artifacts.
Args:
iterations (int): Number of denoising iterations.
"""
logging.info("Step 3: Running Iterative Denoising for %d iterations...", iterations)
denoised = self.noise.copy()
for i in range(iterations):
time.sleep(0.5)
denoised = np.clip(denoised + 0.1 * np.random.randn(64, 64), -1, 1)
logging.info(" Iteration %d: Noise reduction step completed.", i + 1)
self.low_res_image = np.clip(denoised + 0.5, 0, 1)
logging.info("→ Iterative Denoising Completed.")
self.intermediate_images['low_res'] = self.low_res_image.copy()
def super_resolution(self):
"""
Step 4: Apply a super-resolution technique to upscale the low resolution image.
The transformation scales the image from 64x64 to 1024x1024 using a Kronecker product.
"""
logging.info("Step 4: Applying Super-Resolution (64x64 → 1024x1024)...")
time.sleep(2)
self.final_image = np.kron(self.low_res_image, np.ones((16, 16)))
logging.info("→ Super-Resolution Completed.")
self.intermediate_images['super_res'] = self.final_image.copy()
def post_processing(self):
"""
Step 5: Post-process the image to remove artifacts and clean up visual quality.
"""
logging.info("Step 5: Performing Post-Processing...")
time.sleep(1)
self.final_image = np.clip(self.final_image, 0, 1)
logging.info("→ Post-Processing Completed. Image cleaned.")
def optimization(self):
"""
Step 6: Apply memory and speed optimizations.
Also simulates GPU memory usage tracking.
"""
logging.info("Step 6: Applying Memory & Speed Optimization...")
time.sleep(1)
self.optimizations_applied = True
# Simulate GPU memory usage (in MB)
self.gpu_memory_usage = np.random.randint(1000, 2000)
logging.info("→ Optimizations Applied. Simulated GPU memory usage: %d MB", self.gpu_memory_usage)
def coherence_check(self):
"""
Step 7: Check the visual and semantic coherence of the generated image.
"""
logging.info("Step 7: Performing Visual & Semantic Coherence Check...")
time.sleep(1)
self.coherence_verified = True
logging.info("→ Coherence Verified.")
def benchmarking(self):
"""
Step 8: Run benchmarking to evaluate image quality (e.g., FID, CLIP similarity).
"""
logging.info("Step 8: Running Benchmarking (FID, CLIP)...")
time.sleep(1)
self.benchmark_scores = {"FID": 15.4, "CLIP": 0.78}
logging.info("→ Benchmark Score: FID ~%s, CLIP Similarity ~%s",
self.benchmark_scores["FID"], self.benchmark_scores["CLIP"])
self.report['benchmark'] = self.benchmark_scores
def bias_analysis(self):
"""
Step 9: Conduct bias and fairness analysis to ensure no significant biases are present.
"""
logging.info("Step 9: Conducting Bias & Fairness Analysis...")
time.sleep(1)
self.bias_analysis_report = "Bias Analysis Completed. No significant biases detected."
logging.info("→ %s", self.bias_analysis_report)
self.report['bias_analysis'] = self.bias_analysis_report
def contrast_adjustment(self):
"""
Step 10: Adjust the image contrast to enhance definition.
"""
logging.info("Step 10: Adjusting Contrast...")
time.sleep(1)
self.final_image = np.clip(self.final_image * 1.2, 0, 1)
self.contrast_adjusted = True
logging.info("→ Contrast Adjustment Completed.")
def color_correction(self):
"""
Step 11: Correct image colors to balance tone and saturation.
"""
logging.info("Step 11: Performing Color Correction...")
time.sleep(1)
self.final_image = (self.final_image - np.min(self.final_image)) / (np.max(self.final_image) - np.min(self.final_image) + 1e-5)
self.color_corrected = True
logging.info("→ Color Correction Completed.")
def detail_enhancement(self):
"""
Step 12: Enhance image details to improve overall sharpness.
"""
logging.info("Step 12: Enhancing Details...")
time.sleep(1)
# Simulate detail enhancement by a slight increase in pixel intensity
self.final_image = np.clip(self.final_image + 0.05, 0, 1)
self.detail_enhancement_done = True
logging.info("→ Detail Enhancement Completed.")
def edge_sharpening(self):
"""
Step 13: Apply an edge sharpening filter to enhance image outlines.
"""
logging.info("Step 13: Sharpening Edges...")
time.sleep(1)
# Simulated edge sharpening (in a real scenario, a convolution filter might be applied)
self.final_image = np.clip(self.final_image + 0.03, 0, 1)
self.edge_sharpened = True
logging.info("→ Edge Sharpening Completed.")
def add_watermark(self):
"""
Step 14: Add a watermark to the final image for authentication.
"""
logging.info("Step 14: Adding Watermark to the Image...")
time.sleep(1)
# Simulated watermark: overlay a faint text pattern by modifying pixel values slightly
watermark_pattern = np.linspace(0, 0.05, self.final_image.shape[0]).reshape(-1, 1)
self.final_image = np.clip(self.final_image + watermark_pattern, 0, 1)
self.watermark_added = True
logging.info("→ Watermark Added.")
def save_intermediate_images(self):
"""
Save all intermediate images generated during the pipeline for debugging and documentation.
"""
logging.info("Saving intermediate images...")
for key, image in self.intermediate_images.items():
path = os.path.join(self.output_dir, f"{key}.png")
plt.imsave(path, image, cmap='gray')
logging.info("→ Saved '%s' image at %s", key, path)
def generate_report(self):
"""
Generate and save a comprehensive simulation report in JSON format.
"""
logging.info("Generating simulation report...")
self.report['prompt'] = self.prompt
self.report['optimizations_applied'] = self.optimizations_applied
self.report['coherence_verified'] = self.coherence_verified
self.report['contrast_adjusted'] = self.contrast_adjusted
self.report['color_corrected'] = self.color_corrected
self.report['detail_enhancement_done'] = self.detail_enhancement_done
self.report['edge_sharpened'] = self.edge_sharpened
self.report['watermark_added'] = self.watermark_added
self.report['gpu_memory_usage_MB'] = self.gpu_memory_usage
self.report['final_image_shape'] = self.final_image.shape if self.final_image is not None else None
with open(self.report_file, "w") as f:
json.dump(self.report, f, indent=4)
logging.info("→ Report saved to %s", self.report_file)
def async_save_image(self, image, filename):
"""
Save the image asynchronously in a separate thread.
Args:
image (numpy.ndarray): The image to save.
filename (str): Output file name.
"""
def save():
path = os.path.join(self.output_dir, filename)
plt.imsave(path, image, cmap='gray')
logging.info("Asynchronously saved image: %s", path)
thread = threading.Thread(target=save)
thread.start()
def render_image(self):
"""
Display the final image using matplotlib and save it to disk.
"""
logging.info("Final Step: Rendering Image...")
if self.final_image is not None:
plt.figure(figsize=(8, 8))
plt.imshow(self.final_image, cmap='gray')
plt.title("Simulated Generated Image")
plt.axis('off')
plt.show()
# Synchronous save of the final image
final_path = os.path.join(self.output_dir, "final_image.png")
plt.imsave(final_path, self.final_image, cmap='gray')
logging.info("→ Final image saved to %s", final_path)
# Asynchronous save for demonstration purposes
self.async_save_image(self.final_image, "final_image_async.png")
else:
logging.error("Error: Final image not available.")
def simulate_gpu_usage(self):
"""
Simulate monitoring of GPU memory usage during processing.
"""
logging.info("Simulating GPU usage monitoring...")
time.sleep(0.5)
# Increment the simulated GPU memory usage by a random amount
self.gpu_memory_usage += np.random.randint(50, 100)
logging.info("→ Updated GPU memory usage: %d MB", self.gpu_memory_usage)
def final_review(self):
"""
Final review step: perform a final check and annotate the image if all processing is complete.
"""
logging.info("Final Step: Performing Final Review and Annotation...")
time.sleep(1)
if all([self.optimizations_applied, self.coherence_verified, self.contrast_adjusted,
self.color_corrected, self.detail_enhancement_done, self.edge_sharpened, self.watermark_added]):
logging.info("→ All processing steps confirmed. Image passes final review.")
else:
logging.warning("→ Final review warning: Some processing steps were not fully completed.")
def generate(self):
"""
Execute the entire image generation pipeline, sequencing each step and recording outputs.
"""
logging.info("\nStarting Advanced Image Generation Pipeline")
logging.info("-" * 70)
try:
self.text_embedding()
self.diffusion_initialization()
self.iterative_denoising(iterations=8)
self.simulate_gpu_usage()
self.super_resolution()
self.post_processing()
self.optimization()
self.simulate_gpu_usage()
self.coherence_check()
self.benchmarking()
self.bias_analysis()
self.contrast_adjustment()
self.color_correction()
self.detail_enhancement()
self.edge_sharpening()
self.add_watermark()
self.save_intermediate_images()
self.generate_report()
self.final_review()
logging.info("Final Step: Rendering Image...")
self.render_image()
except Exception as e:
logging.error("An error occurred during image generation: %s", e)
self.report['error'] = str(e)
with open(self.report_file, "w") as f:
json.dump(self.report, f, indent=4)
def main():
"""
Main function to run the simulation. Supports command-line arguments for custom prompts
and batch processing multiple simulations.
"""
parser = argparse.ArgumentParser(description="Advanced Simulation of Image Generation from a Text Prompt")
parser.add_argument("--prompt", type=str,
default="A futuristic city at sunset with flying cars, neon lights, reflective skyscrapers, and digital billboards.",
help="Text description to generate the image.")
parser.add_argument("--batch", type=int, default=1,
help="Number of simulations to run in batch mode.")
args = parser.parse_args()
simulations = []
for i in range(args.batch):
logging.info("Initializing simulation %d", i + 1)
sim = ImageGenerationSimulator(args.prompt)
sim.generate()
simulations.append(sim)
logging.info("Simulation %d completed.\n%s", i + 1, "-" * 70)
time.sleep(2)
logging.info("All simulations completed. Generating aggregated batch report...")
final_report = {
"total_simulations": args.batch,
"simulations": [sim.report for sim in simulations]
}
final_report_file = os.path.join("output_images", "batch_report.json")
with open(final_report_file, "w") as f:
json.dump(final_report, f, indent=4)
logging.info("Batch report saved to %s", final_report_file)
if __name__ == "__main__":
main()
Fakewhale STUDIO © 2025